平行四边形教案

时间:2024-11-17 03:06:19
关于平行四边形教案三篇

关于平行四边形教案三篇

作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?以下是小编整理的平行四边形教案3篇,希望能够帮助到大家。

平行四边形教案 篇1

一、 教学目标:

1.掌握用一组对边平行且相等来判定平行四边形的方法.

2.会综合运用平行四边形的四种判定方法和性质来证明问题.

3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

二、 重点、难点

1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

2.难点:平行四边形的判定定理与性质定理的综合应用.

三、例题的意图分析

本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的.判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

四、课堂引入

1. 平行四边形的性质;

2. 平行四边形的判定方法;

3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

结论:一组对边平行且相等的四边形是平行四边形.

五、例习题分析

例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

分析:证明BE=DF,可以证明两个三角形全等,也可以证明

四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

证明:∵ 四边形ABCD是平行四边形,

AD∥CB,AD=CD.

∵ E、F分别是AD、BC的中点,

DE∥BF,且DE= AD,BF= BC.

DE=BF.

四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

BE=DF.

此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.

分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

证明:∵ 四边形ABCD是平行四边形,

AB=CD,且AB∥CD.

BAE=DCF.

平行四边形教案 篇2

  【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)

【回顾与思考】:

活动一:

准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.

(1)你得到了怎样的四边形?与同伴交流一下

(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?

(3)平行四边形的定义: 的四边形叫做平行四边形.

平行四边形 连成的线段叫做对角线

如图,四边形ABCD是平行四边形,

记作” ”

活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?

(2)平行四边形的性质:平行四边形的对边

平行四边形的对角

几何语言:

∵四边形ABCD是平行四边形(已知)

∴AB= ,BC= ( )

∠A = ,∠B = ( )

【知识应用】:

1. □ABCD中,AB=3,BC=5,则AD= CD= 。

2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。

3. 如图:四边形ABCD是平行四边形。

(1)边AB、BC的长度

(2)求∠D、∠C度数。

【当堂反馈(小测)】:

1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.

2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;

3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.

4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。

6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数

【巩固提升】:

1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。

2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。

3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。

4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )

A. 105° B. 115° C. 125° D. 65°

5、在□ABCD中,∠B比∠A大20°,则∠D的`度数是 ( )

A. 80° B. 90° C. 100° D. 110°

6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )

A、88°,108°,88°B、88°,104°,108°

C、88°,92°,88° D、88°,92°,92°

7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )

A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1

8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。

9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数

10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?

平行四边形教案 篇3

教学目标:

结合生活情境和实际操作,直观地认识平行四边形。

教学设计:

(一)创设活动情境

师:同学们,你们喜欢变魔术吗?

(生自由回答。)

师:现在老师要变魔术给你们看一看。

(教师拿出一个长方形教具,拉动长方形框架对角使其变为另一个图形。向不同的方向拉,这样反复做几次。)

师:你们想不想试一试? (学生跃跃欲试。)

(二)探索新知

1.做一做

(1)师:同学们,你们可以亲自动手做一做。你在拉动时注意观察拉动后的长方形发生了哪些变化?这个新图形又是什么样的?并把自己的想法与同伴说一说。

(以小组为单位开始活动,教师在小组内随时指导。)

(通过动手操作,学生不难发现长方形拉动后角不再是直角了或是角的大小变了,但边的长短没有变。)

(2)以小组汇报方式在全班反馈:新图形与长方形的联系与区别,描述新图形的形状。

(学生语言表达不一定清楚,但只要意思对,教师这时都要给予鼓励。)

(3)你们知道长方形变化后得到的是什么图形吗?

(学生回答。这时有的学生能结合自己的生活经验说出这是平行四边形,如说不出教师可以直接揭示。)

(设计意图通过动手操作,让学生根据自己的活动体验、小组交流自主发现平行四边形与长方形的联系与区别。)

2.说一说

(1)师:这样的图形你们在生活中见过吗?在哪儿?

(给学生思考时间,引导学生在小组内说一说。)

(设计意图让学生先独立思考是为了有较完整的思维,小组交流是让每个学生都能参与进来。)

(2)小组形式汇报反馈。

当学生语言表达不清时,要在尊重学生的基础上,鼓励他把话说完整。

(3)课件演示生活中见到的平行四边形。

(设计意图通过真实的生活情境进一步认识平行四边形,让学生感到平行四边形离我们并不远。)

3.画一画

(1)师:你们想把刚才在生活中找到的这些平行四边形在点子图中画出来吗?

(2)出示附页3中的'点子图。学生动手画一画。

(对有困难的学生,教师要随机指导。)

(3)展示作品,引导学生参与评价。

(设计意图尊重学生的个性发展,在评价中自我反思。)

4.拼一拼

(以游戏的方式进行。)

(1)师:现在我们来做拼图游戏,用你们手中的七巧板来拼一拼今天我们认识的平行四边形。

(2)生进行拼图游戏,教师巡视指导。

(鼓励学生用多种组合拼出平行四边形。学生拼图过程中可以与同伴随意交流。)

(设计意图学生经过以上的数学活动,可能已经疲劳了,根据儿童的心理特点,此活动以游戏的方式进行,让学生在轻松、愉快的气氛中拼一拼,进一步直观认识平行四边形。)

(三)小结本节课内容,布置实践作业

这节课我们认识了一个新图形――平行四边形,并知道在我们的生活中可以找到它。请你们对生活中物体再进行观察,去找一找我们今天认识的这个新图形。

《关于平行四边形教案三篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式