初中数学教学设计合集15篇
作为一名辛苦耕耘的教育工作者,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?以下是小编帮大家整理的初中数学教学设计,仅供参考,希望能够帮助到大家。
初中数学教学设计1一、素质教育目标
(一)知识教学点
1、要求学生学会用移项解方程的方法。
2、使学生掌握移项变号的基本原则。
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。
二、学法引导
1、教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。
2、学生学法:练习→移项法制→练习。
三、重点、难点、疑点及解决办法
1、重点:移项法则的掌握。
2、难点:移项法解一元一次方程的步骤。
3、疑点:移项变号的掌握。
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片。
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。
(出示投影1)
利用等式的`性质解方程
(1)xx;(2)xxx;
解:方程的两边都加7,解:方程的两边都减去x,
得x,xx 得x,
即x 、 合并同类项得x。
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。
(出示投影2)
师提出问题:
1、上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2、改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间。
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号。
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项、这里应注意移项要改变符号。
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式。
对比练习:(出示投影3)
解方程:(1);(2);
(3);(4)、
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验、)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验。
(1);(2);
(3);(4)、
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。
(四)变式训练,培养能力
(出示投影5)
口答:
1、下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从,得到;
(2)从,得到;
(3)从,得到;
2、小明在解方程时,是这样写的解题过程:
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”、要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。
(出示投影6)
用移项解方程:
(1);(2);
(3);(4)、
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。
(出示投影7)
解下列方程:
(1);(2);(3);
(4);(5);(6)、
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点、②检验要把所得未知数的值代入原方程。
初中数学教学设计2一、 内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中 ……此处隐藏20754个字……念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。
初中数学教学设计14一、教材分析
全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算 、轴对称图形、数据的分析与比较。
二、学情分析
本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。
三、目标任务
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的`重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。
四. 主要教学措施
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。
2、把握学生思想动态,及时与学生沟通,搞好师生关系。
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6、 开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。
初中数学教学设计15一、学情分析
八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理
二、教材分析
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
三、教学目标设计
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
四、教学重点难点
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
五、教学方法
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
六、教具准备
课件、三角板
七、教学过程设计
教学环节1
教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的'欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
八、板书设计
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
九、习题拓展
如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
十、作业设计
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
文档为doc格式